Copied to
clipboard

G = C24⋊D15order 480 = 25·3·5

The semidirect product of C24 and D15 acting via D15/C3=D5

non-abelian, soluble, monomial

Aliases: C24⋊D15, C24⋊C5⋊S3, C3⋊(C24⋊D5), (C23×C6)⋊2D5, (C3×C24⋊C5)⋊1C2, SmallGroup(480,1195)

Series: Derived Chief Lower central Upper central

C1C24C3×C24⋊C5 — C24⋊D15
C1C24C24⋊C5C3×C24⋊C5 — C24⋊D15
C3×C24⋊C5 — C24⋊D15
C1

Generators and relations for C24⋊D15
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, eae-1=ab=ba, faf=ac=ca, ad=da, ebe-1=fbf=bc=cb, bd=db, ece-1=cd=dc, cf=fc, ede-1=a, fdf=abcd, fef=e-1 >

Subgroups: 1016 in 86 conjugacy classes, 7 normal (all characteristic)
C1, C2, C3, C4, C22, C5, S3, C6, C2×C4, D4, C23, D5, Dic3, D6, C2×C6, C15, C22⋊C4, C2×D4, C24, C2×Dic3, C3⋊D4, C22×S3, C22×C6, D15, C22≀C2, C6.D4, C2×C3⋊D4, C23×C6, C24⋊C5, C244S3, C24⋊D5, C3×C24⋊C5, C24⋊D15
Quotients: C1, C2, S3, D5, D15, C24⋊D5, C24⋊D15

Character table of C24⋊D15

 class 12A2B2C2D34A4B4C5A5B6A6B6C15A15B15C15D
 size 1555602606060323210101032323232
ρ1111111111111111111    trivial
ρ21111-11-1-1-1111111111    linear of order 2
ρ322220-100022-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ4222202000-1+5/2-1-5/2222-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ5222202000-1-5/2-1+5/2222-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ622220-1000-1+5/2-1-5/2-1-1-132ζ5432ζ554ζ3ζ533ζ52523ζ533ζ52533ζ543ζ554    orthogonal lifted from D15
ρ722220-1000-1-5/2-1+5/2-1-1-13ζ533ζ525332ζ5432ζ5543ζ543ζ554ζ3ζ533ζ5252    orthogonal lifted from D15
ρ822220-1000-1-5/2-1+5/2-1-1-1ζ3ζ533ζ52523ζ543ζ55432ζ5432ζ5543ζ533ζ5253    orthogonal lifted from D15
ρ922220-1000-1+5/2-1-5/2-1-1-13ζ543ζ5543ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ554    orthogonal lifted from D15
ρ1051-31-15-1110011-30000    orthogonal lifted from C24⋊D5
ρ1151-31151-1-10011-30000    orthogonal lifted from C24⋊D5
ρ12511-315-1-11001-310000    orthogonal lifted from C24⋊D5
ρ13511-3-1511-1001-310000    orthogonal lifted from C24⋊D5
ρ145-31115-11-100-3110000    orthogonal lifted from C24⋊D5
ρ155-311-151-1100-3110000    orthogonal lifted from C24⋊D5
ρ161022-60-500000-13-10000    orthogonal faithful
ρ1710-6220-5000003-1-10000    orthogonal faithful
ρ18102-620-500000-1-130000    orthogonal faithful

Permutation representations of C24⋊D15
On 30 points - transitive group 30T106
Generators in S30
(3 19)(5 21)(8 24)(10 26)(13 29)(15 16)
(2 18)(3 19)(4 20)(5 21)(7 23)(8 24)(9 25)(10 26)(12 28)(13 29)(14 30)(15 16)
(1 17)(5 21)(6 22)(10 26)(11 27)(15 16)
(1 17)(4 20)(6 22)(9 25)(11 27)(14 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 16)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)

G:=sub<Sym(30)| (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)>;

G:=Group( (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17) );

G=PermutationGroup([[(3,19),(5,21),(8,24),(10,26),(13,29),(15,16)], [(2,18),(3,19),(4,20),(5,21),(7,23),(8,24),(9,25),(10,26),(12,28),(13,29),(14,30),(15,16)], [(1,17),(5,21),(6,22),(10,26),(11,27),(15,16)], [(1,17),(4,20),(6,22),(9,25),(11,27),(14,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,16),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17)]])

G:=TransitiveGroup(30,106);

On 30 points - transitive group 30T119
Generators in S30
(3 19)(5 21)(8 24)(10 26)(13 29)(15 16)
(2 18)(3 19)(4 20)(5 21)(7 23)(8 24)(9 25)(10 26)(12 28)(13 29)(14 30)(15 16)
(1 17)(5 21)(6 22)(10 26)(11 27)(15 16)
(1 17)(4 20)(6 22)(9 25)(11 27)(14 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 17)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)

G:=sub<Sym(30)| (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)>;

G:=Group( (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25) );

G=PermutationGroup([[(3,19),(5,21),(8,24),(10,26),(13,29),(15,16)], [(2,18),(3,19),(4,20),(5,21),(7,23),(8,24),(9,25),(10,26),(12,28),(13,29),(14,30),(15,16)], [(1,17),(5,21),(6,22),(10,26),(11,27),(15,16)], [(1,17),(4,20),(6,22),(9,25),(11,27),(14,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,17),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25)]])

G:=TransitiveGroup(30,119);

Matrix representation of C24⋊D15 in GL7(𝔽61)

1000000
0100000
0010000
00060000
00006000
0000010
0000001
,
1000000
0100000
0010000
00060000
00006000
00000600
00000060
,
1000000
0100000
00600000
0001000
00006000
0000010
0000001
,
1000000
0100000
00600000
0001000
0000100
0000010
00000060
,
231400000
394500000
0000100
0000010
0000001
0010000
0001000
,
60100000
0100000
0000100
0001000
0010000
0000001
0000010

G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60],[23,39,0,0,0,0,0,14,45,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],[60,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;

C24⋊D15 in GAP, Magma, Sage, TeX

C_2^4\rtimes D_{15}
% in TeX

G:=Group("C2^4:D15");
// GroupNames label

G:=SmallGroup(480,1195);
// by ID

G=gap.SmallGroup(480,1195);
# by ID

G:=PCGroup([7,-2,-3,-5,-2,2,2,2,57,506,2523,717,1768,13865,2749,7356,755]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,e*c*e^-1=c*d=d*c,c*f=f*c,e*d*e^-1=a,f*d*f=a*b*c*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of C24⋊D15 in TeX

׿
×
𝔽