non-abelian, soluble, monomial
Aliases: C24⋊D15, C24⋊C5⋊S3, C3⋊(C24⋊D5), (C23×C6)⋊2D5, (C3×C24⋊C5)⋊1C2, SmallGroup(480,1195)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C3×C24⋊C5 — C24⋊D15 |
C1 — C24 — C24⋊C5 — C3×C24⋊C5 — C24⋊D15 |
C3×C24⋊C5 — C24⋊D15 |
Generators and relations for C24⋊D15
G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, eae-1=ab=ba, faf=ac=ca, ad=da, ebe-1=fbf=bc=cb, bd=db, ece-1=cd=dc, cf=fc, ede-1=a, fdf=abcd, fef=e-1 >
Subgroups: 1016 in 86 conjugacy classes, 7 normal (all characteristic)
C1, C2, C3, C4, C22, C5, S3, C6, C2×C4, D4, C23, D5, Dic3, D6, C2×C6, C15, C22⋊C4, C2×D4, C24, C2×Dic3, C3⋊D4, C22×S3, C22×C6, D15, C22≀C2, C6.D4, C2×C3⋊D4, C23×C6, C24⋊C5, C24⋊4S3, C24⋊D5, C3×C24⋊C5, C24⋊D15
Quotients: C1, C2, S3, D5, D15, C24⋊D5, C24⋊D15
Character table of C24⋊D15
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 15A | 15B | 15C | 15D | |
size | 1 | 5 | 5 | 5 | 60 | 2 | 60 | 60 | 60 | 32 | 32 | 10 | 10 | 10 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1 | -1 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | orthogonal lifted from D15 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1 | -1 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1 | -1 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1 | -1 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | orthogonal lifted from D15 |
ρ10 | 5 | 1 | -3 | 1 | -1 | 5 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ11 | 5 | 1 | -3 | 1 | 1 | 5 | 1 | -1 | -1 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ12 | 5 | 1 | 1 | -3 | 1 | 5 | -1 | -1 | 1 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ13 | 5 | 1 | 1 | -3 | -1 | 5 | 1 | 1 | -1 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ14 | 5 | -3 | 1 | 1 | 1 | 5 | -1 | 1 | -1 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ15 | 5 | -3 | 1 | 1 | -1 | 5 | 1 | -1 | 1 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ16 | 10 | 2 | 2 | -6 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ17 | 10 | -6 | 2 | 2 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 10 | 2 | -6 | 2 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal faithful |
(3 19)(5 21)(8 24)(10 26)(13 29)(15 16)
(2 18)(3 19)(4 20)(5 21)(7 23)(8 24)(9 25)(10 26)(12 28)(13 29)(14 30)(15 16)
(1 17)(5 21)(6 22)(10 26)(11 27)(15 16)
(1 17)(4 20)(6 22)(9 25)(11 27)(14 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 16)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)
G:=sub<Sym(30)| (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)>;
G:=Group( (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17) );
G=PermutationGroup([[(3,19),(5,21),(8,24),(10,26),(13,29),(15,16)], [(2,18),(3,19),(4,20),(5,21),(7,23),(8,24),(9,25),(10,26),(12,28),(13,29),(14,30),(15,16)], [(1,17),(5,21),(6,22),(10,26),(11,27),(15,16)], [(1,17),(4,20),(6,22),(9,25),(11,27),(14,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,16),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17)]])
G:=TransitiveGroup(30,106);
(3 19)(5 21)(8 24)(10 26)(13 29)(15 16)
(2 18)(3 19)(4 20)(5 21)(7 23)(8 24)(9 25)(10 26)(12 28)(13 29)(14 30)(15 16)
(1 17)(5 21)(6 22)(10 26)(11 27)(15 16)
(1 17)(4 20)(6 22)(9 25)(11 27)(14 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 17)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)
G:=sub<Sym(30)| (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)>;
G:=Group( (3,19)(5,21)(8,24)(10,26)(13,29)(15,16), (2,18)(3,19)(4,20)(5,21)(7,23)(8,24)(9,25)(10,26)(12,28)(13,29)(14,30)(15,16), (1,17)(5,21)(6,22)(10,26)(11,27)(15,16), (1,17)(4,20)(6,22)(9,25)(11,27)(14,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,17)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25) );
G=PermutationGroup([[(3,19),(5,21),(8,24),(10,26),(13,29),(15,16)], [(2,18),(3,19),(4,20),(5,21),(7,23),(8,24),(9,25),(10,26),(12,28),(13,29),(14,30),(15,16)], [(1,17),(5,21),(6,22),(10,26),(11,27),(15,16)], [(1,17),(4,20),(6,22),(9,25),(11,27),(14,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,17),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25)]])
G:=TransitiveGroup(30,119);
Matrix representation of C24⋊D15 ►in GL7(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 |
23 | 14 | 0 | 0 | 0 | 0 | 0 |
39 | 45 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
60 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60],[23,39,0,0,0,0,0,14,45,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],[60,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C24⋊D15 in GAP, Magma, Sage, TeX
C_2^4\rtimes D_{15}
% in TeX
G:=Group("C2^4:D15");
// GroupNames label
G:=SmallGroup(480,1195);
// by ID
G=gap.SmallGroup(480,1195);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,2,2,57,506,2523,717,1768,13865,2749,7356,755]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,e*c*e^-1=c*d=d*c,c*f=f*c,e*d*e^-1=a,f*d*f=a*b*c*d,f*e*f=e^-1>;
// generators/relations
Export